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B-spline basis functions as a new approximation method is introduced in the boundary
face method (BFM) to obtain numerical solutions of 3D potential problems. In the BFM,
both boundary integration and variable approximation are performed in the parametric
spaces of the boundary surfaces, therefore, keeps the exact geometric information of a
body in which the problem is defined. In this paper, local bivariate B-spline functions
are proposed to alleviate the influence of B-spline tensor product that will deteriorate
the exactness of numerical results. Numerical tests show that the new method has well
performance in both exactness and convergence.
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1. Introduction

The boundary face method (BFM) has been proposed by Zhang et al. [2009] and
implemented with approximation functions constructed by the moving least-squares
(MLS) approximation. It is a generalization of the conventional boundary element
method (BEM) with the development of exact geometry used for analysis. It thor-
oughly overcomes the shortcoming that geometric shape is crudely approximated
in most FEM analyses. This paper presents a new implementation of BFM, i.e.,
the B-spline basis functions [Carl de Boor (1972); Lyle Ramshaw (1989)] instead of
the MLS are used for approximating the boundary variables. The work is largely
stimulated by the conception of isogeometric analysis [Hughes et al. (2005)].

The conception of isogeometric analysis is first proposed by Hughes and his col-
laborators to overcome some difficulties that occur in classical design loop [Hughes
et al. (2005); Cottrell et al. (2007); Bazilevs et al. (2006); Wall et al. (2008)].
Its primary goal is using an exact geometric representation for analysis. Within
the concept, B-spline basis functions generated from nonuniform rational B-spline
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(NURBS) play a key role in offering exact geometry representation, simplification
of design optimization, and tighter integration of analysis and CAD.

Considering the important influence of B-spline basis functions, we introduce
them into the framework of the BFM. Coupling the BFM with the B-spline basis
functions, two distinct differences are involved comparing with traditional BEM.
One is that the integrand quantities, such as the coordinates of Gauss integra-
tion points, Jacobian, and out normal are calculated directly from exact geome-
try instead of element approximation, an important property inherited from BFM.
Another is that B-spline approximation represents continuity between elements, a
distinct property that must be explicitly expressed in the BEA cases. Furthermore,
a richer set of refinement operations for the basis functions makes B-spline more
flexibly to be used for adaptive analysis in BFM.

In our scheme, B-spline basis functions described by the traditional global
forms are converted into the local forms. Thus, construction of B-spline approx-
imation functions will be no longer fully restricted by the fashion of tensor prod-
uct, which require control points must lie topologically in a rectangular grid. This
strategy largely reduces the load for computation and saves a lot of computational
resource.

This paper is organized as follows. In Sec. 2, the description of local bivari-
ate B-spline function is given here. In Sec. 3, bivariate B-spline functions as an
approximate tool are used in the discretization of BIEs. Numerical examples for 3D
potential problems are given in Sec. 4. Finally, we present the conclusions for our
work in Sec. 5.

2. Local Bivariate B-Spline Function

Local B-spline functions are built from B-spline basis functions. The B-spline basis
functions in global form are defined recursively for zero degree,

Bi,k(ξ) =

{
1, ξi ≤ ξ ≤ ξi+1

0, otherwise
k = 0, (1)

and for nonzero degrees,

Bi,k(ξ) =
ξ − ξi

ξi+k − ξi
Bi,k−1(ξ) +

ξi+k+1 − ξ

ξi+k+1 − ξi+1
Bi+1,k−1(ξ), k > 0. (2)

Assuming that 0/0 := 0 and Ξ = [ξ1, ξ2, . . . , ξn+k+1], where Ξ is a knot vector;
ξi the ith knot and n the total number of basis functions corresponding to the
number of control points. Knot values presented in the knot vector Ξ are given by:
ξ1 = ξ2 = · · · = ξk+1 = 0, ξn+1 = ξn+2 = · · · = ξn+k+1 = 1, and ξi = i/(n − k) for
i = k + 1, k + 2, . . . n.
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Then, the local form of bivariate B-spline function can be constructed by the
basis functions. It is shown as:

P (ξ, η) =
k∑

r=0

l∑
s=0

Nrs(ξ, η)prs, (3)

where Nrs(ξ, η) is defined by:

Nrs(ξ, η) =

{
B

(r+1)
i−r,k (ξ)B(s+1)

j−s,l (η), ξ ∈ [ξi, ξi+1), η ∈ [ηj , ηj+1)

0, otherwise
, (4)

pij(pxij , pyij , pzij) are a set of control points. ξ and η are parametric coordinates with
their values lying in the [ξ1, ξ2, . . . , ξn+k+1] and [η1, η2, . . . , ηm+l+1], respectively.
Here, prs = p(i−r)(j−s), [ξi, ξi+1) and [ηj , ηj+1) are nonzero intervals.

3. Discretization of the BIE for Potential Problem

3.1. BIE for potential problem

Given boundary conditions, the self-regular BIE corresponding to the Laplace’s
equation can be written as:

0 =
∫

Γ

(u(s) − u(y))qs(s, y)dΓ −
∫

Γ

q(s)us(s, y)dΓ, (5)

where u and q are respectively potential and flux functions on the boundary Γ, which
is approximated by local bivariate B-spline functions in our paper. S is the field
point and y is the source point. us(s, y) and qs(s, y) are the fundamental solutions.
For the 3D potential problems,

us(s, y) =
1

4πr(s, y)
, (6)

qs(s, y) =
∂us(s, y)

∂n(s)
=

1
4πr2(s, y)

·
3∑

i=1

xi(s) − xi(y)
r(s, y)

· ni(s), (7)

where r is the spatial distance from source point to field point.
Substituting the Eq. (3) into Eq. (5) and discretizing the BIE, we obtain the

discrete form:

0 =
∑∫

Γij

(u(s) − u(y))qs(s, y)dΓ −
∑∫

Γij

q(s)us(s, y)dΓ. (8)

Assumed that Γij = {(ξ, η)|ξ ∈ [ξiξi+1), η ∈ [ηj ηj+1)} and given the following
substitutions:

I
(1)
ij =

∫
Γij

(u(s) − u(y))qs(s, y)dΓ, I
(2)
ij =

∫
Γij

q(s)us(s, y)dΓ, (9)

1240009-3



March 24, 2012 10:1 WSPC/0219-8762 196-IJCM 1240009

J. Gu, J. Zhang & X. Sheng

which can be further written as:

I
(1)
ij =

k∑
r=0

l∑
s=0

(∫ 1

−1

∫ 1

−1

(
Ñrs − Ñrs(ξ0, η0)

)
qs(ξ, η)J(ξ, η)dξdη

)
ũrs (10)

I
(2)
ij =

k∑
r=0

l∑
s=0

(∫ 1

−1

∫ 1

−1

Ñrsu
s(ξ, η)J(ξ, η)dξdη

)
q̃rs. (11)

Then, Eq. (5) can be expressed as the matrix form:

Hũ− Gq̃ = 0. (12)

4. Numerical Examples

Two 3D exact geometric models for potential problems are employed in the BFM
to illustrate the efficiency and accuracy of B-spline approximation. The boundary
geometric information used for solving the BIEs, such as the Jacobian, the out
normal, and the distance between two points, can be exactly obtained from the
exact geometry of a body based on the conception of BFM.

To estimate numerical error and convergence, a “global” L2 norm error, normal-
ized by |v|max is defined by Zhang et al. [2004]:

e =
1

|v|max

√√√√ 1
N

N∑
i=1

(
v
(e)
i − v

(n)
i

)2

, (13)

where |v|max is the maximum value of sample points and the superscripts (e) and
(n) refer to the exact and numerical solutions, respectively.

4.1. The potential problem

To assess the accuracy of B-spline approximation method, we use the following three
analytical fields, which are taken from the paper by Zhang et al. [2004].

(i) Quadratic solution:

u = −2x2 + y2 + z2. (14)

(ii) Cubic solution:

u = x3 + y3 + z3 − 3yx2 − 3xz2 − 3zy2. (15)

In all cases, BIEs generated from Laplace’s equation ∇2u = 0 is solved, combined
with reasonable prescribed boundary conditions corresponding to the above analyt-
ical solutions.
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(a) (b)

Fig. 1. Two different mesh models for the sphere: (a) mesh according to global B-spline definition
and (b) mesh according to local B-spline definition.

4.1.1. Potential problem for a sphere

A sphere is first used for discussion, with radius 2 unit and center at the origin. The
usual spherical polar coordinates θ and ϕ are used. The Dirichlet boundary condition
is employed in the discussion. Comparison among quadratic and cubic B-spline
functions, as well as MLS will be carried out on the sphere. The Dirichlet boundary
conditions corresponding to the exact solutions (Eqs. (14)–(15)) are imposed on
the surface of the sphere. Three sets of nodes: (a) 29 nodes, (b) 118 nodes, and (c)
277 nodes are used for obtaining the numerical results. Two kinds of comparison
are used for illustrating the B-spline approximation. In the first one, two fashions
of meshes are adopted to testify their computational efficiency. Mesh displayed in
Fig. 1(b) indicates that elements (also called nodes) are located along woofs, the
number of elements can be modified according to the woofs length. Therefore, the
element size in the full surface can be modified near to a uniform size.

whereas, mesh displayed in Fig. 1(a) indicates that the number of nodes along
each woof keeps a fixed quantity according to B-spline basis global definition. There-
fore, elements are dense in the areas of two poles of the sphere. We distribute the
same number of elements (40 elements) in the two sides of equators; 200 nodes are
used for subdividing the full surface in Fig. 1(a), but only 118 nodes are used in
Fig. 1(b). Numerical test is performed between the two different mesh models. The
L2 errors of nodal values of q (denoted by Err q) evaluated by Eq. (13) and time
required for constructing the coefficient matrices (denoted by Mat t) for various
analytical fields are described in Table 1. The L2 errors are signed with percentage
(%). Quadratic and cubic B-spline basis functions are employed to make the com-
parison. From the data described in Table 1, we can clearly find much efficiency can
be introduced in the example from the local definition of basis functions, not only
in exactness, but also in time cost.
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Table 1. The L2 errors of q and computational time from two kinds of meshes.

Number of nodes Analytical field Degree of Err q(%) Mat t(s)
B-spline

118 (Local B-spline) two degree 0.1609 117
u =quadratic

three degree 0.06234 271

two degree 0.4574 196
u= cubic

three degree 0.1488 172

200 (Global B-spline) two degree 2.245 890
u =quadratic

three degree 2.088 860

two degree 2.594 805
u= cubic

three degree 2.434 750

Table 2. The L2 error of components of potential u and flux q, for Dirichlet problems on
a sphere.

Number of nodes u (D) q z (D) q (S) q y (S) q z (N) Time (s)

29 B. 5.801 18.18 5.557 22.05 6.182 6
M. 2.036 18.48 2.58 11.37 4.915 7

58 B. 0.4816 3.851 1.392 10.38 1.15 9
M. 0.3058 4.214 1.125 9.405 1.437 11

78 B. 0.05612 0.07807 1.467 2.664 0.5647 23
M. 0.2186 0.9159 1.045 6.981 0.8239 28

118 B. 0.02391 0.04935 0.348 0.7733 0.1488 56
M. 0.1791 0.3986 0.3927 4.791 0.3851 67

176 B. 0.007535 0.02501 0.108 0.3671 0.10262 117
M. 0.04059 0.3333 0.14 2.968 0.2224 187

277 B. 0.005735 0.00267 0.02242 0.1213 0.07536 499
M. 0.02055 0.2086 0.04361 1.367 0.1328 646

Next, comparison between MLS approximation and B-spline approximation is
performed in the same framework of BFM. Numerical results in terms of components
of potential u and flux q are shown in Table 2. In this case, the Dirichlet bound-
ary condition corresponding to Eq. (14) is imposed on the surface of the sphere.
According to the data from Table 2, high rates of convergence with approximation
by cubic B-spline basis functions are shown in the Fig. 2. Comparing with MLS,
Table 2 indicates that the B-spline basis functions maintain less time-consuming,
high rates of convergence, and more accuracy.

4.1.2. Potential problem for a convex body with a circle hole

Here, we use a convex body for analysis, its geometry and main size are described
in Fig. 3. The body is closed by three different parts of torus surfaces, two cylinder
surfaces, and two discal planes. Dirichlet boundary conditions corresponding to the
exact solutions (Eqs. (14)–(15)) are imposed on all of faces. There are three sets of
nodes, (a) 244 nodes, (b) 452 nodes, and (c) 741 nodes, to be used for discretizing
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Fig. 2. Relative error and convergence of two methods.

Fig. 3. A convex body with a circle hole and its main size.

this body surface. B-spline approximation functions for each face can be constructed
by a free selection of degrees in two directions respectively. For example, the torus
surface labeled in Fig. 3, we use cubic basis function for approximation in the
circumference direction, whereas use quadratic basis function in another direction.
The L2 errors of nodal values of q (denoted by Err q) evaluated by Eq. (14) for
various analytical fields are shown in Table 3.

Table 3. Variation in L2 error of q obtained by different sets
of nodes for Dirichlet problems on a convex body.

Number of nodes 244 452 741

u = quadratic Err q (%) 1.645 1.159 0.5919
u = cubic Err q (%) 1.878 0.5794 0.389
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Fig. 4. Normal flux q on the No. 2 surface.
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Fig. 5. Normal flux q on the No. 3 surface.

In order to determine the convergence rate, the normal flux q for three slightness
surfaces labeled in the Fig. 3 are considered. In Fig. 4, the numerical results obtained
with the node sets (b) and (c) are in good agreement with the quadratic-2 exact
solutions. Figure 5 indicates that the numerical results also are stably convergent to
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the cubic exact solution even if the results obtained from the node sets (a) fluctuate
widely.

5. Conclusion

The bivariate B-spline function as an efficient approximation method has been suc-
cessfully implemented in the BFM for solving the BIEs. The new implementation
inherits the advantages of the BFM. For example, the geometric model of a body is
directly used for analysis, thus no geometric error introduced. To alleviate the diffi-
culties in meshing associated with the tensor product form of the B-spline bivariate
functions, the traditional global form of B-spline basis functions are converted into
local form. As the B-spline bivariate functions are fitting type functions, i.e., they
lack the Kronecker delta property, an inverse transformation is performed to convert
them into ones of interpolation type.

Numerical results have demonstrated that our implementation is feasible for
solution of BIEs. As a comparison, the MLS approximation, which is widely applied
in meshless analysis, is also implemented into the same framework of BFM. Compar-
isons between the B-spline bivariate function and the MLS approximation regarding
to accuracy, stability, and efficiency have been performed using examples of potential
problems. Results show that our method performs better in all mentioned aspects.

To deal with the large-scale computations for complicated geometric bodies, the
fast multipole method (FMM) [Zhang et al. (2005); Zhang and Tanaka (2007, 2008)]
can be applied to reduce the computation expense. Moreover, this is planned.
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